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Abstract

In the present paper, a class of partial differential equations governing various rod and plate theories of Bernoulli—
Euler and Poisson—Kirchhoff type is studied by Lie transformation group methods. A system of equations determining
the generators of the admitted point Lie groups (symmetries) is derived and the general statement of the associated
group-classification problem is given. A simple relation is deduced allowing to recognize easily the variational sym-
metries among the “ordinary” symmetries of a self-adjoint equation of the class examined. Explicit formulae for the
conserved currents of the corresponding (via Bessel-Hagen’s extension of Noether’s theorem) conservation laws are
suggested. Solutions of group-classification problems are given for subclasses of equations of the foregoing type
governing stability and vibration of rods, fluid conveying pipes and plates resting on variable elastic foundations. The
obtained group-classification results are used to derive conservation laws and group-invariant solutions readily ap-
plicable in rod dynamics and plate statics and dynamics. New generalized symmetries and conservation laws for the
theories of Timoshenko beams, Reissner—-Mindlin plates and three-dimensional elastostatics are presented.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The main objective of the present paper is to analyze from group-theoretical point of view several well
known and acknowledged linear theories for elastic rods ' and plates which could be called “classical”,
though some of them have been suggested quite recently, in the sense to be clear below.

Historically, interest in the development of theories describing the mechanical behaviour of slender or
thin solid bodies (such as rods and plates) from three-dimensional models by a dimensional reduction can
be traced more than three centuries back to Leibniz who introduced the idea to use the average of the stress
over the cross-sections of the body for constructing one-dimensional theories for rods. The first complete
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! In this work, following Antman (1984) we use “rod” as a generic name for “arch”, “bar”, “beam”, “ring”, “column”, “tube”,
“pipe”, etc. We employ “rod” in the intuitive sense of a slender solid body.
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theory of that kind was the Bernoulli-Euler beam theory based on Hooke’s law (as the constitutive relation)
and the (kinematical) hypotheses that a plane cross-section normal to the rod axis, which is supposed to be
inextensible and initially straight, remains undeformed and normal to the bent rod axis, the latter being
assumed planar. Approximately one century later, the Poisson—Kirchhoff theory for thin elastic plates
emerged out of linear elastostatics and the well known Kirchhoff’s hypotheses that a straight fiber normal to
the plate middle-plane remains undeformed and normal to the bent plate middle-plane, the latter being
assumed inextensible. Starting from Euler’s celebrated study on the stability of an axially compressed
column, the elementary Bernoulli-Euler beam theory has been subjected to various modifications within
the framework of the aforementioned hypotheses in order to cover the effects of elastic foundations,
follower forces, fluid flow, etc.; similarly, the Poisson—Kirchhoff plate theory has been extended within
Kirchhoff’s hypotheses in numerous works to describe, for instance, the stability of plates, the influence of
elastic foundations, fluid-structure interaction, etc. (see, e.g., Bolotin, 1961; Vlasov and Leont’ev, 1966;
Paidoussis, 1998; Elishakoff, 2002). In the present paper, such contributions to the classical theories of
Bernoulli-Euler and Poisson—Kirchhoff are also referred to as “classical”, for easy reference and to dis-
tinguish them from more sophisticated, in general nonlinear, theories for rods and plates (see, e.g., Antman,
1984, 1995; Naghdi, 1984; Simo et al., 1988; Dichmann et al., 1996 and the references therein).

In the classical theories, the state of equilibrium of an elastic rod or plate is fully determined in terms of the
transversal displacement of the rod axis or plate middle-plane. The corresponding governing equations are
linear fourth-order partial differential equations in one dependent variable, the transversal displacement
function, and one or two independent variables—the coordinates of the rod axis or plate middle-plane,
respectively. By introducing the inertial force in transversal direction, according to d’Alembert principle, all
these theories are recognized and employed to describe the dynamic behaviour of rods and plates as well. In
this case, the time appears as an additional independent variable in the governing equations. To complete the
description of the theories that are in the focus of attention of the present work, it is to be noticed, that many
of them can be set in a variational statement involving only one dependent variable, the corresponding
governing equations being the Euler-Lagrange equations associated with an appropriate action functional.

Each of the classical rod or plate theories can be viewed as a certain one- or two-dimensional approxi-
mation of three-dimensional elasticity achieved by a systematic use of projection methods (see, e.g.,
Antman, 1984; Naghdi, 1984; Niordson, 1985). However, during such a dimensional reduction procedure
many details are necessarily lost either for the highly restrictive kinematical hypotheses adopted or since
only certain averages of the stresses over the rod cross-sections or plate thickness, respectively, are taken
into account. In consequence of that, as a rule, the invariance properties (symmetries) inherent to such a
“proper” rod or plate theory can neither be reduced to, nor be derived in full from the invariance properties
of one-, two- or three-dimensional elasticity. Therefore, in order to analyze a proper rod or plate theory of
the forgoing type from group-theoretical point of view, one should thoroughly study the symmetries of its
governing equations, resisting the temptation to merely take advantage of the allied results established in
the theory of elasticity, which are at disposal in a long series of papers: Chirkunov (1973, 1975), Fletcher
(1976), Olver (1984a,b, 1988), Suhubi (1987, 1989), Honein and Herrmann (1997), Hatfield and Olver
(1998), etc. In our opinion, the study of the invariance properties of Bernoulli-Euler type rod equations and
Poisson—Kirchhoff type plate equations is far away from its completion; there are only a few works in which
results in this field can be found, namely those by Ovsiannikov (1972), Ibragimov (1985), Kienzler (1986),
Sosa et al. (1988), Vassilev (1988, 1997), Chien et al. (1993, 1994), Tabarrok et al. (1994) and Vassilev et al.
(2000). That is why, in the present work, bearing in mind the general form of the governing equations
specified above, we shall apply Lie transformation group methods 2 to examine the invariance of a generic

2 The foundations of the Lie transformation group methods, including the basic notions, statements, techniques and many
applications of the symmetries of differential equations and variational problems, can be found in Ovsiannikov (1982), Ibragimov
(1985) and Olver (1993) (see also the references therein).
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linear fourth-order partial differential equation in one dependent and several independent variables with
respect to local Lie groups of point transformations of the involved independent and dependent variables.
Then, we shall use the results obtained to analyze several rod and plate theories of particular interest. The
work is motivated both by the wide applicability of the theories in question in structural mechanics, and by
the remarkable efficiency demonstrated by the symmetry methods, especially when applied to differential
equations arising in physics and engineering.

Actually, once the invariance properties of a given differential equation are established, several im-
portant applications of its symmetries arise. First, it is possible to distinguish classes of solutions to this
equation which are invariant under the transformations of symmetry groups admitted. The determination
of such a group-invariant solution assumes solving a reduced equation involving less independent vari-
ables than the original one. Typical examples of group-invariant solutions are axisymmetric solutions,
self-similar solutions, travelling waves, etc., which have proved to be quite useful in many branches of
physics and engineering. For a self-adjoint differential equation another substantial application of its
symmetries is available. As it is well known, the self-adjoint equations are the Euler-Lagrange equations
of a certain action functional. If a one-parameter symmetry group of such an equation turns out to be its
variational symmetry as well, that is a symmetry of the associated action functional, then Bessel-Hagen’s
(1921) extension of Noether’s theorem (1918) guarantees the existence of a conservation law for the
smooth solutions of this equation. Needless to recall or discuss here the fundamental role that the con-
served quantities and conservation laws (or the corresponding integral relations, i.e. the balance laws)
have played in natural sciences, but it is worth pointing out that the available conservation laws (balance
laws) should not be overlooked (as it is often done) in the numerical analysis (when constructing finite
difference schemes or verifying numerical results, for instance) or in the examination of discontinuous
solutions (acceleration waves, shock waves, etc.) of any system of differential equations of physical
interest.

As a matter of fact, the conservation laws have attracted much attention in fracture analysis and defect
mechanics of solids and structures just because they have proved useful in the analysis of jump-disconti-
nuities such as notches and cracks. Here, the conservation laws appeared as path-independent integrals, for
the first time in Cherepanov (1967) and then, independently, in Rice (1968) who introduced the so-called J-
integral and showed its utility in the asymptotic analysis of the stress field near notches and cracks in
linearly elastic solids. Later, Budiansky and Rice (1973) introduced next two path-independent integrals (L
and M) in linear elastostatics and showed their applicability for calculation of the energy release rate re-
sulting from cavity motion. It should be remarked however, that the J-integral could be derived using the
conservative properties of the energy—momentum tensor proposed earlier by Eshelby (1956) as well as be
identified, together with L- and M-integrals, among the conservation laws for isotropic homogeneous linear
elastostatics established by Giinther (1962) and Knowles and Sternberg (1972).

Apparently, Glinther (1962) initiated the analysis of the theory of elasticity from group-theoretical point
of view as far as his study is based on Noether’s theorem. However, his work remained unnoticed and ten
years later Knowles and Sternberg (1972) starting anew presented the conservation laws associated through
Noether’s theorem with translational and rotational invariance of the equations of homogeneous isotropic
linear and finite elastostatics. They also derived another conservation law associated with the scale-
invariance of the equations of linear homogeneous isotropic elastostatics. The case of linear homogeneous
elastodynamics is examined in Fletcher (1976). The aforementioned works concern only geometric sym-
metries of the equations considered. In a series of papers, Olver (1984a,b, 1988) and Hatfield and Olver
(1998) presented a comprehensive classification of the conservation laws related to the invariance under the
geometric and first-order generalized symmetries of the equations of elastostatics. All these contributions
show the advantages that one can gain from the study of the invariance properties of a theory of physical
interest and the successive derivation of conservation laws using Noether’s theorem instead of using for that
purpose ad hoc techniques or physical arguments.
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Unfortunately, as underlined before, the knowledge of the invariance properties of the theory of elasticity
is of little usage when the symmetries of a proper rod or plate theory are to be established. The present
paper is intended to gain an insight into this latter problem.

The layout of the paper is as follows. A detailed description of the differential equations to be studied as
well as the variational statement for the self-adjoint equations among them are given in Section 2. In
Section 3, a system of equations determining the generators of the symmetry groups admitted by the
equations of the class considered is derived and the general statement of the associated group-classification
problem is given. Then, the variational symmetries of the self-adjoint equations of the examined class are
investigated. A simple relation allowing to recognize easily the variational symmetries among the “ordi-
nary”’ point Lie symmetries of such an equation is deduced, and explicit formulae for the conserved cur-
rents of the conservation laws corresponding to the variational symmetries via Bessel-Hagen’s extension of
Noether’s theorem are suggested. Group-classification results, conservation laws and group-invariant so-
lutions are presented in Section 4 for differential equations governing vibration of rods on a variable elastic
foundation and dynamic stability of fluid conveying pipes. Similar results are displayed in Section 5 for the
equations governing stability and vibration of plates of Poisson—Kirchhoff type. In Section 6, new gene-
ralized symmetries and conservation laws for the theories of Timoshenko beams, Reissner—Mindlin plates
and three-dimensional elastostatics are presented. Finally, in Section 7, one can find an extended summary
of the results obtained as well as practical hints on how to use this article without going into detail con-
cerning the Lie group analysis of differential equations.

2. Basic equations

Consider the class of fourth-order linear homogeneous partial differential equations

AP (X)Wyps + AP (X)W, + AP (X)Wop + A* (X)W, + A(x)w = 0, (1)
in n independent variables x = (x',...,x") and one dependent variable w(x). Here and throughout: Greek
indices have the range 1,2, ..., n, unless explicitly stated otherwise; the usual summation convention over a

repeated index is employed; wy,q,..., (K =1,2,...) denote (as it is accepted in the group analysis of dif-
ferential equations) the kth order partial derivatives of the dependent variable with respect to the inde-
pendent variables, i.e.

Fw

T o k=120

Wayoeo =

Further, a similar notation will be used for the partial derivatives of any other function of the variables

x!,...,x" but, in this case, the indices indicating the differentiation will be preceded by a comma, e.g.,

. kAa/f'yri
L SN I S

K*1 02 Ok Ox1 Ox% + - - Ox%

The coefficients of Eq. (1) are supposed to be smooth functions possessing as many derivatives as may be

required on a certain domain of interest, and to be symmetric under any permutation of their indices, i.e.
AP — gPBmo — ol Aw/ﬁs, AP — gbr — gobe — Aa“/ﬂ’ AP — 4P

Using the total derivative operators

Dy = s w2 W Ot W e
o = Wy Won Wopy Wouve )
ox* ow "ow, W, W e
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Eq. (1) may be written in the form

9w] =0, (2)
where & is the linear differential operator given by the expression

9 = A""°D,DyD,Ds + A**'D,DyD, + A’ D,Dy + A*D, + A. (3)

An equation of form (2) is the Euler-Lagrange equation associated with a certain variational problem
involving only one dependent variable if and only if the differential operator & is self-adjoint, that is

=9, (4)
where " is the (formal) adjoint operator of & (cf. Olver, 1993). The explicit form of 2" is
9" = D,DyD,Ds;A*""° — D,DyD,A*" + D,DyA** — D,A* + A. (5)

In such a case, Eq. (2) can be associated with the variational problem for the functional

Aw] z/%w@[w]dxl Ly,

since the application of the Euler operator

E:i—D c +DD g — D,D,D, c ——+D,D,D,D, —— ° ..
ow 6 " oW, Wy aW,M awywr
on the Lagrangian den51ty
L =iwg|w] (6)
yields
Iw] = E(L) (7

due to relations (4) and (5).

3. Symmetries and conservation laws

Consider a local one-parameter Lie group of point transformations acting on some open subset Q of the

space R"™! representing the independent and dependent variables x',...,x" and w involved in our basic
equation (2). The infinitesimal generator of such a group is a vector field X on the space R""!,
X = xw) () o ®
- ) ax:“‘ ;7 ) aw ?

whose components &“(x,w) and n(x,w) are supposed to be functions of class C* on Q. By virtue of
Theorem 2.31 (Olver, 1993), a vector field X of form (8) generates a point Lie symmetry group of Eq. (2)
(or, in other words, the equation admits this vector field) if and only if there exists a function 4 depending
on x, w and derivatives of w (that is a differential function) such that the following infinitesimal criterion of
invariance,

X(@[w)) ~i7[w] =0, 9)

holds; here X denotes the £-th prolongation of the vector field X (Ovsiannikov, 1982).

The i 1nvar1ance criterion (9) leads, through the standard computational procedure (see, e.g., Ovsiannikov,
1982 or Olver, 1993), to the following results:
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(i) each equation of form (2), being linear and homogeneous, is invariant under the point Lie groups gene-
rated by the vector fields

0
Xo=w— —
"= ow ow’
where u(x) is an arbitrary solution of the equation considered, the invariance criterion (9) being fulfilled
with / =1 and 4 = 0 for the generators X, and X, respectively;
(i1) an equation of form (2) admits other vector fields (8), in addition to the aforementioned (10), if and
only if they have the special form
0 0
— EH - .
X = () =+ olw o, (1)
the functions & (x) and ¢(x) being nontrivial solutions of the following system of determining equations
(called further the DE system for easy reference):

é/tAillfyd + (o — ;L)Aalﬁ'é 7Ac<ﬁ}'uéi _ A“/j“‘sfj’yﬂ _ A“W‘Séﬁl _ A#lﬁ'éq =0, (12)

X, = u(x) (10)

4Ao{/fyﬂg,/1 _ ZAM/f;wé Y= 2Ax}'yvéﬁ _ 2A[)’~,xuv§j".uv 4 éHAf'fy + (O’ _ A)Alﬁy _ A[xﬁ”f:';l _ Ac{u”,'é/i _ A;t[i}*éf?tﬂ =0

N Y

(13)
6Aaﬁuv6w . ZAWW‘/:{);A-G _ ZA/;“"Uéiwa + 3A“WGVH _ (3/2)‘4“”5% _ (3/2)Aﬁuvf?¢w + éuAi{;
+ (0 — AP — 4 — 4 =0, (14)
4AWMG,;¢W _ AH\‘Jréiwm + SAO(MO-,HV _ Auvaéiw + ZAOWO',” _ A#\'éiw + éllAil + (O' _ A)A“ _ AH@’L — 07
(15)
Aoc/f“/éa‘“ﬁy& “l‘A“ﬁyO-,ocﬂy +Aa/50'1a/3 _"_Azo_’x + fﬂA‘# + (O._ /I)A —_ 07 (16)

for a certain function A depending on x only. (Here, by a trivial solution we mean not only & =0,
o =0, but also & =0, ¢ = ¢ = const # 0, since the latter leads to the vector field cX; generating the
same group as X, which is already identified to be admitted by each equation of the type considered.)

Thus, given an equation of form (2), the question is whether there exist vector fields X # cX; of form (11)
which leave it invariant, and the answer depends on whether the respective DE system has at least one
nontrivial solution. In this context the coefficients of Eq. (2) are supposed to be known functions, and
thereby Eqgs. (12)—(16) constitute an over-determined system of linear homogeneous partial differential
equations with respect to the unknowns & and o. Therefore, as a rule, it turns out possible to find in an
explicit form some (or even all) nontrivial solutions of the DE system, and thus to determine several (all)
additional point Lie symmetry groups inherent to the equation in question.

It should be remarked that various equations of form (2) admit only the point Lie groups generated by
the vector fields (10) with u(x) being any solution of the respective equation. For instance, it is easy to check
that all equations of the form (35) such that ¥ = 6" and x(x) = p(x), where p(x) is an arbitrary poly-
nomial of x' and x?, belong to this variety. Without too much difficulties one can ascertain that the same
holds true for the equations of the form (44) with N*/ = 6" and k(x) = p(x).

On the other hand, there are equations of the foregoing type which are invariant under a larger group; an
immediate example is the biharmonic equation in two independent variables, 4*w = 0, which admits the
seven-parameter group generated by the linear combinations of X; and the following six additional basic
vector fields (cf. Ovsiannikov, 1972):
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0 0 0 0 2 5, 0 0
o Vad Yo X aa ) - 6 Tg g+ 2wl
a 1 a 2 a 1,2 2\2 a 1.2 a 1 a
@ Y o () (x)]6x1+2xx 6x2+2xwaw'

An important problem naturally arises in the light of the above note. It may be placed in the category of the
so-called group-classification problems (see Ovsiannikov, 1982) and consists in determining all those
equations of the type considered that admit a larger group together with this group itself. Its most general
statement assumes all functions A*7°(x), 4% (x), A (x), 4*(x), A(x), £*(x) and ¢(x) involved in the deter-
mining equations (12)-(16) to be regarded as unknown variables and to find all solutions of this system.
Here we are not going to study this rather complicated nonlinear problem in general. However, in the
subsequent sections we examine the group-classification problems for several subclasses of equations of
form (2) widely used in mechanics of solids and structures.
Let us now specialize to the case of self-adjoint equations of form (2). Suppose that

I =0, 7=9" (17)

is such an equation. Then, a particular interest exists for its variational symmetries—the Lie groups gene-
rated by the so-called infinitesimal divergence symmetries (see Definition 4.33 in Olver, 1993) of any
variational functional with (17) as the associated Euler—Lagrange equation. (Note that if two functionals
lead to the same Euler—Lagrange equation, then they have the same collection of infinitesimal divergence
symmetries.) This interest is motivated by the fact that, in virtue of Bessel-Hagen’s extension of Noether’s
theorem, each variational symmetry of a given self-adjoint equation corresponds to a conservation law
admitted by the smooth solutions of the equation. Thus, if a vector field X of form (8) is found to generate a
variational symmetry of Eq. (17), then Bessel-Hagen’s extension of Noether’s theorem implies the existence
of a conserved current, which, in the present case, is a n-tuple of differential functions P* such that

D,P* = QZ|w], (18)
where Q is the characteristic of the vector field X; by definition
0= ﬂ—W;cCM~ (19)

The total divergence of the conserved current P* vanishes on the smooth solutions of Eq. (17) and so we
have the conservation law

D,P* =0, (20)

Eq. (18) being its expression in characteristic form, and Q—its characteristic. Therefore, to derive the
conservation laws of the foregoing type, one can proceed by first determining the variational symmetries of
Eq. (17), and then using their characteristics (19) to find, from equality (18), explicit expressions for the
corresponding conserved currents P*.

Having analyzed earlier the invariance properties of the whole class of Eq. (2), it is convenient to base the
determination of the variational symmetries of Eq. (17) on the following observation. A vector field X of
form (8) generates a variational symmetry of Eq. (17) if and only if X is an infinitesimal symmetry of this
equation, that is the infinitesimal criterion of invariance (9) holds, and

){(@[W])-F <§—Z+Dyé”)9[w] =0. (21)

This is a consequence of Lemma 4.34 and Proposition 5.55 (Olver, 1993), see also Lemma 7.46 (Olver,
1995). Subtracting expression (9) from (21) we can replace the latter with
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on
<a 1D z)@[w] —0,
and as Z[w)] is not supposed to vanish identically we arrive at the conclusion that

on

—+DE"+1=0 22

ow + Dyt + (22)
is a necessary and sufficient condition for an infinitesimal symmetry admitted by a self-adjoint equation of
form (2) to be its infinitesimal variational symmetry as well. It should be remarked that the same holds true
for any self-adjoint partial differential equation in one dependent variable. For a vector field of form (11)

relation (22) simplifies, and reads
o+, +1=0. (23)

Thus to find the variational symmetries of an equation of form (17), it suffices to check which of its “or-
dinary” symmetries satisfy the additional requirement (22). For instance, the result (i) implies that
Xo = w0/0w does not generate a variational symmetry of any equation of form (17), while a vector field
X, = u(x)0/0w generates a variational symmetry of an equation of form (17) whenever u(x) is its solution
(this is a common property of all systems of linear homogeneous partial differential equations, see Section
5.3 in Olver, 1993).

Suppose one has established that a vector field X with characteristic Q generates a variational symmetry
of a given equation of form (17), and now wishes to find the conserved current P* of the corresponding
conservation law (20). For this purpose one can use formulae (5.150) and (5.151) given by Olver (1993)
which express (in an explicit form) a null Lagrangian as a divergence. Indeed, in this case the right-hand
side of equality (18) is a total divergence or, in other words, a null Lagrangian. However, bearing in mind
the recommendation of Olver (1993) to use these formulae only as a last resort since “‘the homotopy
formula (5.151) can rapidly become unmanageable”, in the present paper we suggest another way for
determination of the sought conserved current.

Our starting point is the so-called Noether identity (cf. Ibragimov, 1985):

X(2) + (D,) % = QE(2) + DN(2), (24)
which holds for any differential function % and vector field X of the types considered here, N* being the
differential operators given by the expressions

0
=&+ (0] — 1 .. -
= 1 6wwl.“v£

0 P 0
+Z wm DHQ{ +Z(_1)DHD156 }a (25)
O

r>1 Willl”'#r s>1

where Q = 5 — £"w, is the characteristic of the vector field X. By setting ¥ = L in identity (24) and taking
into account expressions (6) and (7), one obtains (after a little manipulation) the identity

DN*(=wZ[w]) = —wX(Z[w]) = {n + (D,")w — 20} 7 [w], (26)

valid for any self-adjoint differential operator & of form (3) and vector field of form (8).
In particular, for X, = v(x)0/0w, where v(x) is an arbitrary smooth function, we have

¢'=0, O0=n=y, (27)
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and hence
X,(9[w) = 1 (28)

since & is a linear differential operator. Substituting expressions (27) and (28) into identity (26) we obtain
D N*"(—wZ[w]) = v2|w| — w2[v], (29)
which is nothing but the reciprocity relation associated with the equation 2[w] = 0. Under the additional

assumption v = u(x), where u(x) is an arbitrary smooth solution of the latter equation, the reciprocity
relation (29) becomes

D, N*(—w2[w]) = uZw]. (30)

Taking into account expression (30), we can give now the following general formula for the conserved
currents P* of the conservation laws with characteristics O = u corresponding to the infinitesimal varia-
tional symmetries X, = u0/0w of Eq. (17):

P =Pl + G,
where

Py = N*(-w ), (1)
and G* is a current of a trivial conservation law. Of course,

D,P, = uZw]
and

D,P, =0 (32)

on the smooth solutions of Eq. (17).
Next, let X be an infinitesimal variational symmetry of an equation of form (17) with characteristic
0 = wo —w,&". Then, on account of equality (21), identity (26) takes the form

D,N"(—w2w]) = 07w,
and hence we can write down the following explicit formula for the conserved currents P* of the conser-

vation laws with characteristics O = wo — w,&" corresponding to the aforementioned variational symme-
tries of the considered equation of form (17), namely

P* =B + &, (33)

B* = N*(—iwD[w]) + 1D, (w&*4""° DyD,Dsw — w&" 4’ DyD, Dsw), (34)
where, as before, G* is a current of a trivial conservation law. Of course,
D,B" = 0Z[w],
and on the smooth solutions of the considered equation of form (17) we have
D,B" = 0.
Let us remark that the special null divergence,
1D, (W A" DyD, Dsw — wE* A"’ DD, Dsw)
is used in expression (34) for the conserved current B* to cut away the fourth-order derivatives of

the dependent variable w since in practice one is usually interested in conserved currents which involve
derivatives of order not higher than k — 1, where & is the order of the equation considered. Using the
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operators (25) it is easy to check that the right-hand side of expression (34) incorporates derivatives of the
variable w of order less than fourth. In the subsequent sections just (31) and (34) will be referred to as the
expressions for the conserved currents of the conservation laws with characteristics Q =u and
0 =wao — w,¢&", respectively, derived for equations of the form (17).

To summarize, given an equation of form (17), the crucial point on the way of deriving conservation laws
admitted by its smooth solutions is to find vector fields of form (11) generating “ordinary” point Lie
symmetries of the given equation. For that purpose, we should look for solutions of the respective DE
system (12)—(16). Once such vector fields are found, it is easy to check which of their linear combinations
satisfy the requirement (22) and hence generate variational symmetries of the equation considered. Now,
using the characteristics of these symmetries we first construct the operators N* from formulae (25) and
then calculate from formula (34) the conserved currents of the corresponding conservation laws.

4. Symmetries, conservation laws and group-invariant solutions of rod equations within Bernoulli-Euler theory

Consider a subclass of Egs. (1), with n = 2, consisting of the self-adjoint partial differential equations

ywiin + 1P wap + x(x)w =0, (35)

where 7 = const # 0, y* are arbitrary constants (but (3'2)* + (32) # 0, otherwise Eq. (35) degenerates and

becomes ordinary differential equation), and x(x) is an arbitrary function. Equations of this special type are
used by many authors to study applied engineering problems concerning dynamics and stability of both
elastic beams resting on elastic foundations (see, e.g., Smith and Herrmann, 1972) and pipes conveying fluid
(see, e.g., Paidoussis, 1998). In this context, the dependent variable w is the transversal displacement of the
rod axis, x'—the coordinate along this axis and x>—the time.

First of all, the group-classification problem is considered. In view of the results (i) and (ii) of Section 3, it is
clear that each equation of form (35) is invariant under the point Lie groups generated by the vector fields
Xo = wd/0w and X, = u(x)0/0w, where u(x) is any smooth solution of the foregoing equation and the ob-
jective is to find those equations of the type considered which admit vector fields X of form (11), X # cXj,
¢ = const # 0.

The system of determining equations (12)—(16) simplifies considerably for the equations of form (35). The
solution of this simplified system involves lengthy computations which are omitted here (for details we refer
to Vassilev et al., 2000). The results of the group-classification analysis of the class of Eq. (35) are sum-
marized in Table 1, where the equations invariant under larger groups are given through their coefficients
together with the generators of the admitted symmetry groups. In Table 1, f, f' and f° are arbitrary
constants and for convenience the following vector fields are introduced:

0 A N » 0 AN N » O
L= Y»*:(”ﬁx T E e Wl TET e

Having completely solved the group-classification problem, our next step is to identify the variational
symmetries of those equations of form (35) which are found to admit larger symmetry groups. For this
purpose, we are to apply condition (22) to the linear combinations of the vector field X, = wd/0w and the
vector fields presented in Table 1 with 2 =g — 45}1. Omitting the details, we found that all vector fields
quoted under numbers 1, 3, 5, 7, 8, 9 and 11 generate variational symmetries of the respective equations.
In case #2, the variational symmetries are generated by the vector field [f' 4 2(x'2/7*)f* |1 +
287V, + Y3 + (1/2)X,, in case #4—by ¥, and 2Y, + ¥; + (1/2)Xy, in case #6—by (y'2/x*)Y; + ¥, and
PV + Y5 + (1/2)Xo, and in case #10—by Y}, 1 and ¥; + (1/2)X0.

Once the variational symmetries of the differential equations of form (35) are identified, we are ready to
derive the corresponding conservation laws. The conserved currents of the conservation laws for the
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Table 1
Equations of form (35) invariant under larger symmetry groups

# Coeflicients Generators

1 K(x) = f(Fx" = ') B'Yi + By

2 12 # 0, det(z?) = 0, k(x) = (B> +x2) 7/ (), (B'+ 202/ 7)Y + 25V + 1

y= (B4 B ! = ()] 1 o ,
3 72 =0, det( 1/) 40, k(x) = (F + )1 (), (B +30(" /2B +65°Ys + 27,
= (B +x2) (B +2x! — (4" /2)x)

4 122 £ 0, det(y) = 0, x(x) = wo(f +x2) 7, Y, 28 + 1

5 =0, det(x*) 7& 0, k(x) = Ko (B +x2)~*? Y1, 38, + Y,

6 7 75 0, det(”) = 0, K(x) = ro(B+x" — (22/72)x?) ™ BY + Ys, (£2/7)h + 12

7 =0, det(1) # 0, x(x) = ro(f + 20" — (1" /7)) BY + 2, (2" /7)) + 21

8 122 det(3*) # 0, K(x) = const Y, Y

9 7?2 det(3*#) = 0, x(x) = const # 0 Y, Y

10 x” # 0, det(") = 0, x(x) =0 N b Y

11 12 =0, det(z*) #0, k(x) =0 Y, Vb, ¥y

equations given in Table 1 are computed using formula (34), the above notes concerning the variational
symmetries being taken into account. The obtained conservation laws are listed in Table 2 (in the same
order as in Table 1) in terms of the differential functions:

B(ll) = —iyQ@wiwi — wiy) + 7wl — Pws 4 ew?] — (72uWW/4)2
B(Zl) = —wiw, + (72"wwu) 1

B(lz) = —XI”W2W;z +y(wiwiz — wawiiy) — %(VW1W11 - XI”WWH),Z,
sz) = —Loywi, + 12w; — 1"'wi + kw?) + 3wiwn — )(1"ww,l)717

B, =" + (/)% B o+ 2x2B‘2‘2) + ww, +%y51“(wwm — wiwyy),

Table 2

Conservation laws for equations of form (35)
# Conservation laws
1 D,[f'B )+ s Bl =0
2 [ﬁ‘ +2 ‘2//22)/1’2)B’ + 2By, + B =0
3 D,[(B +3(x"/2"2)B*) B, + 65°Bly) + 2B7,] = 0
4 D,B%, =0, D,[2BB%, + ng)] =0
5 D,BY, =0, D,[3BB%, + B =0
6 Dx[ﬁB?U +B?3)] =0, Da[(Xlz/XZZ)B(xn + B’fz)} =0
7 D, BB, + 2B}y] = 0, D,[(x" /%*)BYy, + 2B = 0
8 Dsz‘)—O DB):O
9 DxB(“)—O DB“):O
10 D,BY, =0, D,B% =0, D,B% =0
11 D,B}) =0, DB, =0 'y =0
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. 1 11 /.12y .2 2 1 11 12
Bly = [x' 4 (1 /12)|Blyy 4 357 Bl + 3l wwy + 07 (1 wwr 4 25 P wws — ywiwn)].

According to the general results of Section 3, each equation of form (35) admits conservation laws with
characteristics Q = u(x) as well, where u(x) is any smooth solution of the equation considered. These
conservation laws are of form (32), that is

D,P, =0,

the corresponding conserved currents P being given by formula (31), which in the case under conside-
ration simplifies and reads

Py = 1" (uwy —uyuw) + "y (uwyyy + wnwi — uw — ugwiy). (36)

Let us now specialize to the differential equations governing the small transversal vibration of elastic
pipes of uniform thickness and outer radius of the pipe cross-section, conveying inviscid fluid of flow ve-
locity U = const, compressed by an axial end force p = const and lying on a Winkler foundation with
stiffness ¢ = const:

EJwin + (p+ MU?)wyy + 2MUwys + (m + M)wy, + cw = 0, (37)

where EJ is the pipe bending rigidity while m and M are the masses of the pipe and the fluid per unit length,
respectively (see Paidoussis, 1998). Obviously, Eq. (37) belongs to the class (35) with coefficients

y=EJ, M=p+MU* yP=m+M, y?=y=MU k&) =ec. (38)

In this case y*> # 0, k = const and hence, according to the above results concerning the whole class (35),
Eq. (37) admits two infinitesimal variational symmetries ¥; and ¥, for arbitrary values of its coefficients, and
an additional one, Y3 + (1/2)X,, in the special case det(y*) = 0 and k = 0, that is when

plm+M)+mMU* =0, c=0. (39)

1 2

Since the independent variables x' and x* are the spatial variable along the pipe axis and the time, res-
pectively, each conservation law admitted by the smooth solutions of Eq. (37) may be written in the more
familiar form

oY oP
wta =0 (40)

where ¥ is the density and P is the flux of the conservation law. The densities and fluxes of the conservation
laws for Eq. (37) related to the vector fields ¥} and Y, are

¥ = MUwiwi + (m+ M)wiws, Py = EJwiwiiy +cw® — &,
qu = (50, Pz = EJ(W2W111 - W11W12) + (p+MU2)W1W2 +MUW2W2,

& =YEJw, + (m+ M)w; — (p + MU?)wi + cw’].

The conservation law with density ¥, and flux P, corresponds to conservation of wave momentum, while
that with density ¥, = & and flux P, represents conservation of energy. These two conservation laws hold
for arbitrary values of the pipe parameters EJ, M, m, U, p and c. In the special case when equalities (39)
hold (note that this may happen only if the force p is negative, that is if the pipe is extended by it, as the
constants U, m, M should be positive due to their physical meaning), Eq. (37) admits an additional con-
servation law related to the vector field ¥; + (1/2)X, with density and flux
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MU 1

Y, = (xl + - +Mx2) {&V] - z[MUWW] + (m +M)WW2],1}
2U2

WWW] —Mwaz}

+x2{2‘l’2 — |:EJW]W11 —
m 1

} — wMUw; + (m + M)ws],

P 1 MU P+1[MU + (m + M)ww) 1EJ( )
=[x X = ww m ww ——EJ(wwi, — ww
3 M 1+5 1 215 3 11 W11
M?U? M?U?
+x2{2P2 + [ElewH - +MWW1 — Mwaz} 4’2} - +MWW1 — MUww,.

In order to clarify the significance and applicability of these results in the theory of fluid conveying pipes,
let us emphasize the following substantial feature of the suggested density ¥, and flux P, of the energy
conservation law. Recall that, according to formula (33) given in Section 3, the energy conservation law

0¥, oP

2 2 41

ox?  Ox! 0 (41)
could be modified by means of a trivial conservation law with current G*, say taking G' = 0F /dx! and
G? = —0F /ox?, where F is a smooth differential function, to the form

0 OF 0 OF
a2 (lszr@) Jrﬁ <P2 @) =0.

Thus, one has at disposal a multitude of mathematically equivalent densities ¥, + 0F /ox' and fluxes
P, — OF /0x? for the energy conservation law. Under these circumstances, a natural question arises: which of
the aforesaid densities is to be referred to as “proper” energy density of the fluid conveying pipe. The
answer relies on a purely physical argument: the flux corresponding to this “proper’ energy density should
represent the rate of work done on the pipe by the external forces and couples. Integrating the law (41) over
the pipe length (a <x' <b) one obtains

0

b
@/ é’dxl :EJW11W12|2—EJW2W111|i+pW1W2|Z+(MUW2W2+MU2W1W2)|£.

a

The left-hand side of this equality is the rate of change of total energy of the pipe, while the right-hand side
represents the rate of work done on the pipe by the external forces and couples. Indeed, EJw; w1, represents
the rate of work done by the bending moment EJw,; over the angular velocity wy, of the pipe cross-section,
EJw,wy; is the rate of work done by the shear force EJwy;; over the transversal velocity w, of the pipe cross-
section, pwiw, is the rate of work done by the transversal projection pw; of the axial force p over the
transversal velocity w,, and the terms MUw,w, and MU?w,w, represent the rate of work done by forces and
couples due to the fluid flow (see Benjamin, 1961; Paidoussis, 1998). On the basis of this argument, the
suggested expressions for ¥, and P, are recognized as the “proper” energy density and the rate of work
done on the pipe, respectively.

Substituting y = EJ, y'' = y'2 =0, y** =m and x(x) = 0 in Eq. (35), one arrives at the well known
differential equation

E.]W1111 =+ mwyp; = O, (42)

governing the dynamics of a classical homogeneous Bernoulli-Euler beam of bending rigidity EJ and mass
per unit length m. Eq. (42) admits the following five linearly independent infinitesimal variational sym-
metries: Y, Yo, Y3 + (1/2)X,, Y5 = 0/0w and Y; = x>0/0w, where Y5 and Y are vector fields of the type
X, = u(x)0/dw corresponding to the solutions u = 1 and u = x? of Eq. (42), respectively. The densities and
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fluxes of the conservation laws for Eq. (42) associated with these vector fields together with their physical
interpretation are presented in Table 3.

Conservation laws in the dynamics of rods are considered in many papers (see, e.g., Antman, 1984; Chien
et al., 1993; Maddocks and Dichmann, 1994; Tabarrok et al., 1994; Djondjorov, 1995) with or without
reference to the symmetries of the respective governing equations. In order to identify the novelties in this
field achieved in the present contribution, the results presented in some of the aforementioned works are
discussed below.

Chien et al. (1993), employing a technique called by these authors neutral action method, derive con-
servation laws for the dynamics of nonhomogeneous Bernoulli-Euler beams of bending rigidity B(x!) and
inertia term H(x') governed by the equation

Bwiin + 2B jwiii + Buwi + Hwy = 0. (43)

This equation is of form (1) and hence, for the same purpose, the results of Section 3 can be applied. Thus,
given an equation of form (43), one can easily ascertain that the general solution (&', &%, o) of the deter-
mining equations (12)—(16), provided that condition (23) holds, is of the form &' = —f', & = —f2 and
o = 13, where f7 are given by the expressions (33) in Chien et al. (1993); at that, Eqgs. (34) in Chien et al.
(1993) remain the only conditions (necessary and sufficient) for the existence of a nontrivial solution of the
foregoing form. Hence, both approaches lead to the same variety of conservation laws with characteristics
0 =wo — w,¢&". The corresponding conserved currents (35) in Chien et al. (1993) coincide (up to a null
divergence terms) with those obtainable through our formula (34). As for the conservation laws with
characteristics of the form Q = u(x), only a part of them are identified in Chien et al. (1993), namely those
with u(x) = f*(x), f* as in (33) in Chien et al. (1993), while any solution u(x) of Eq. (43) gives rise to a
conservation law whose current is given explicitly by the general formula (31).

Conservation laws for the dynamics of rods of variable length within the Bernoulli-Euler theory are
derived by Tabarrok et al. (1994). Rods, whose length is a linear function of the time, are governed by an
equation of form (35) that belongs to the case #10 in Table 1. For such an equation, Tabarrok et al. (1994)
suggest three conservation laws which (in our notation) are D,Bf;, = 0 and D,Bp) =0 given in Table 2 as
well as the conservation law with characteristic Q = u(x) and current (36) corresponding to the solution
u(x) = const of this equation. In addition to these, the conservation law D,B%, = 0 from Table 2 and the set
of conservation laws with characteristics O = u(x) and currents (36) corresponding to any solution of the
governing equation are presented here.

Table 3
Conservation laws for Bernoulli-Euler beams
Generators Densities and fluxes of the corresponding conservation laws
Space translations Y, Wave momentum
Y1y = mwiw,

Pay = (1/2)[EJ @wiwin — wi,) — mw3)]

Time translations Y, Energy
Py = (1/2)(EJw, + mw3)
Py = EJ(wawin — wiiwia)

Scaling ¥; + (1/2)X, ¥y =x'W + 22, — EJ (wiwn) | — s m(wwy) | — mww,
P<3) = x]P1 + 2x2P2 + Esz(wlwu)_z — %EJ(WW]H — W1W11) + %x'm(wwz)vz
Ys Linear momentum

¥(s) = mwy, Psy = EJwin

Galilean boost ¥; Center-of-mass theorem
'I/(7) = m(x2w2 — W), P(7) = EJ)C2W]|1
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Five conservation laws in the dynamics of rods are reported in Maddocks and Dichmann (1994) within a
general nonlinear direct theory. The restricted version of this theory describing small planar bending of an
uniform inextensible unshearable isotropic elastic rod with a linear constitutive law, the rotatory inertia of
the rod cross-section being neglected, is exactly the classic Bernoulli-Euler theory for homogeneous beams
whose governing equation is (42). Rewriting the conservation laws in Maddocks and Dichmann (1994)
taking into account the aforementioned restrictions we observe that: (1) the conservation law for the total
angular momentum (formula 2.14 in Maddocks and Dichmann, 1994) degenerates to the well known basic
relation of Bernoulli-Euler theory Q = 0M /0x! (here O and M denote shear force and bending moment,
respectively, see Washizu, 1982); (2) the density and flux of the conservation law associated with material
isotropy (formula 4.5 in Maddocks and Dichmann, 1994) vanish identically; (3) the conservation law
corresponding to material homogeneity (formula 3.2 in Maddocks and Dichmann, 1994) reduces to con-
servation of the wave momentum (see Table 3); (4) the expressions for the densities and fluxes of energy
(formula 2.19 in Maddocks and Dichmann, 1994) and linear momentum (formula 2.12 in Maddocks and
Dichmann, 1994) conservation laws coincide with the respective ones presented in Table 3. The set of
conservation laws with characteristics Q = u(x), where u(x) is any solution of Eq. (42), as well as the
conservation law associated with the variational scaling symmetry Y; + (1/2)X, (see Table 3) have no
analogues in Maddocks and Dichmann (1994).

Three interesting kinds of group-invariant solutions to certain equations of class (35) are identified
below. The first of them corresponds to vector fields cY; = Y, where ¢ = const. These group-invariant
solutions are travelling waves

w=U(s), s=x"+ex?

admissible only for Eq. (35) with x(x!,x?) = f(s). The reduced equations determining such group-invariant
solutions are
4 2
U, 12 » 24U

The second one corresponds to the vector field ¥; and is of the form
72
w=U(s), s=x'(*)""- Z(xz)l/z.
X
The vector field Y; is admitted only if x(x',x2) = (x2) *f(s) (see cases #2, 4, 6 and 10 in Table 1). The
reduced equations for these invariant solutions are

d'v = ,,dU »
CY 228 32 %Y (o) U =o.
ds* T ds? R ds +4/(s)

The third kind of group-invariant solutions corresponds to the vector field Yj:

dUu
4y

Y
w="U(s), s=2'()" - ;7(352)2/3~
The vector field Y, is admitted only if x(x',x?) = (x2) "’/ (s) (see cases #3, 5, 7 and 11 in Table 1). The
reduced equations for the invariant solution under consideration are
d‘v d*U dUu
—dys—— — 4y —+3f(s)U = 0.
ds* LS4 ~ds +3()
Obviously, the latter two kinds of group-invariant solutions could be reduced to self-similar solutions if
%2 =0 or y!! =0, respectively.

48y
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5. Symmetries, conservation laws and group-invariant solutions of Poisson—Kirchhoff type plate equations

Consider a thin isotropic elastic plate of bending rigidity D = const resting on an elastic foundation of
Winkler type with variable modulus k(x!,x?) and subjected to an edge loading leading to the appearance of
nonuniform membrane stresses N*(x!,x?). In the framework of Poisson-Kirchhoff plate theory, the
equation governing the small bending of the plate is

DA*w + N*Pw,y + kw = 0, (44)

the membrane stress tensor N*# being symmetric, N/ = N**, and divergence free, i.e. N** = 0. Here, the
independent variables x', x*> are the coordinates of the plate rmddle plane the dependent variable w rep-
resents the transversal dlsplacement field; v is Poisson’s ratio; A is the Laplace operator, that is
A = 6"3? jox*oxP, where 0 is the Kronecker delta symbol; throughout this section Greek indices are
supposed to take values 1, 2. There is a vast amount of papers in which problems concerning stability and
vibration of isotropic thin elastic plates are studied on the ground of this type of equations. Eq. (44) is self-
adjoint and belongs to class (1), n = 2, with coefficients

AP0 =1D(§P5° + 5767 + 57°0"), 4P =0, AP =N" 4*=0, A=k (45)

The aim of this section is to establish the group properties of Eq. (44). First, in view of the general results of
Section 3, it is clear that X, = u(x)0/0w generates a variational symmetry of any equation of form (44)
whenever u(x) is its solution, while X, = w0/0w alone could never generate a variational symmetry of an
equation of form (44), though it is always its infinitesimal point Lie symmetry. Substituting expressions (45)
into the determining equations (12)—(16) one arrives, after a straightforward computation, at the conclusion
that an equation of form (44) is invariant under a point Lie group generated by a vector field X of form
(11), X # ¢Xy (¢ = const), if and only if

o %é% (46)
o £f B o aff g _

o™ i,u + 0" é,;t -0 éfﬂ - O’ (47)

éHNgl:ﬁ _ Notp Vﬁ Nﬂﬂé + 26” N”ﬁ + ZDéﬂéﬁ‘ élfun = 7 (48)

N N =0, (49)

28k, + 4k + NVE,, =0, .

A=-3¢. o

Substituting equality (46) into expression (11), and equalities (46) and (51) into condition (23), one can
conclude that the generator of such a group is a vector field of form

0 0
— Hi n 52
=& —+= é wa (52)
each symmetry of that kind of Eq. (44) being variational symmetry of the latter equation as well. Hence,

there exists a conservation law with characteristic
1
Q = jéiw - Wuéu

and conserved current B* given by formula (34) admitted by the smooth solutions of the equation con-
sidered. Thus, to derive the conservation laws, which correspond to the variational symmetries of an
equation of form (44), it suffices to know the results of the group classification of the class of equations in



V.M. Vassilev, P.A. Djondjorov | International Journal of Solids and Structures 40 (2003) 1585-1614 1601

question; of course, the same holds true for the derivation of group-invariant solutions to Eq. (44). This
group-classification problem is studied in Vassilev (1988, 1991, 1997). The classification results presented
below are based on results obtained in these works.

The scalar fields,

Sy = N3y, sy = (8k — 8,0, N N™)"2, (53)

are found to be of key importance for the group classification of the considered class of equations. These
scalar fields are called invariants of Eq. (44) since here they play a role similar to the role that Laplace’s and
Cotton’s invariants play in the group classification of the second-order linear partial differential equations
(see Ovsiannikov, 1982; Ibragimov, 1985). The following two properties of the scalar fields (53) give us both
an additional reason to call them invariants of Eq. (44) and explicit expressions for the invariants of groups
admitted by Eq. (44). First, if an equation of form (44) admits a vector field of form (52), then

iils(i) + éuSU)# = 0 (] = la 2)a

and hence U(;) = w,/5(; are invariants of the corresponding Lie group whenever s(; 0. Second, if an
equation of form (44) admits a vector field of form (52) and is such that its both invariants (53) are not
identically equal to zero, then s(;)/s(2) is an invariant of the corresponding symmetry group. Note, that
the invariants sy and s;) of such an equation of form (44) provide two couples of functionally inde-
pendent invariants, namely Uy) =w, /50y and sq)/s) as well as Up) = w,/5p) and sq1)/s@), of the ad-
mitted symmetry group, both couples being readily applicable for constructing group-invariant solutions
to the respective equation. However, if even one of the invariants (53) of an equation of form (44) is not
identically equal to zero, then this equation admits at most a three-parameter group with generators of
form (52). On the other hand, if all invariants (53) of an equation of form (44) are identically equal to
zero, then this equation admits a six-parameter group with generators of form (52). Below, the latter case
is set out in detail.

Let w(z) # const be an analytic function of the complex variable z = x! + ix?, and let E,, be the equation
of the form (44) with coefficients

N'"' = N2 —4Re{¢}, N? =N = —4Im{¢}, k=4, (54)

where ¢ is the Schwarzian derivative of the function w, that is

" ! 1/ 2
(&) _ (% 55
0= (%) (%) s
¢ is the complex conjugated of ¢, and the prime is used to denote differentiation with respect to the variable
z. Substituting expressions (54) into formulae (53) one can see that all invariants of equation E, are

identically equal to zero. Then, taking into account the DE system (47)—(50), (54) and (55), one can verify
by direct computing that equation E,, admits the six-parameter group generated by the vector fields

C0 1 o .
Z(/-): Q/)@+§é/{i)’ltwa 021,...,6),

the functions f’&.) being given by the expressions
&y =Re{w}, &) =Im{m},
5(12) = Re{io }, 5%2) = Im{io, },

6(13) = Re{m}, 5%3) = Im{w,},
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1 3 2 .
¢y = Re{im}, &y = Im{iom,},
1 2
¢s) =Re{ms}, &5 = Im{ws},

¢l = Refims}, & = Im{iws},
where

1 ) w?

COQZJ, (H3:5. (56)
It should be remarked that each equation of form (44) which admits a six-parameter group with gene-

rators of form (52) is of type E,, meaning that it can be generated in the above manner using a suitable

analytic function w. The coefficients of each equation of this type are of the form
af _ By _1 By
N7 = 50(“5 q),uw k= §5“#5 ‘¢71ﬁ¢,141r7

where ¢ is a harmonic function, that is 6* ¢, = 0, and vice versa. It is noteworthy that each equation with
variable coefficients of type E,, can be mapped to an equation with constant coefficients belonging to the
same family. It is easy to verify by direct computing that the equation E,, corresponding to an analytic
function @ whose Schwarzian derivative is not constant, transforms to a constant coefficients equation
under the following change of the variables:

v =0, W=wU R, (57)

e =ref [l pea —m{ [l vete) = g,
where f is any linear combination of the functions (56) such that f#£0, i.e.
S =ho + ko, + kos, (58)

where ki, k> and ks are complex constants such that k7 + k3 + k2 # 0.

Consider, as a simple example, the equation E,, corresponding to the analytic function w = zm, where
% is a positive real constant. Then, formula (55) gives ¢ = 4(2 — )z and hence, according to expressions
(54), the coefficients of equation E,, read

NI — N2 — 2 - %) (x1)22 - (xz);z,
()" + ()]
2x'x? 1
(1) + (&) 4l + ()]
Using the function f =z obtained from (58) for v = zm, ki=k=0,k=1+ \/;47?, we introduce,
according to formulae (57), the new independent and dependent variables

(59)

N2 =N"=(2-x) =(2-%)’

=g @7 = aran (). =l ] (60)

Note that the inverse transformations are given by the expressions

x=¢"cosy?, X =¢siny?, w= W[(xl)2 + (xz)z} : (61)
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Under the change of the variables of form (60), the considered equation E,, transforms to the following one,
otw o oW L oW 1
0y*0yfoyray” oyloy! 0y? ay

5P WW =0, (62)

which belongs to the same class (since it corresponds to the analytic function w = ¢’V*/?) but whose co-
efficients are constant.
Eq. (62) admits the six-parameter group of variational symmetries generated by the basic vector fields

0

I/at:_7
o

0 0 0
_ oy 2 ) oy 2
V3 =e” cos(fy )_ayl + €% sin(0)? )6y2 + 6™ wcos(by )_aw’

a
o cos(0y?) —

| 0
Vy = —e” cos(0y?) — + &

0
OV
o — e wsm(Oy )— o

0
— 0" weos(0y?) —

| 0 0
Ve = e % cos(0y?) — — e sin(0)?) — 5o

oy! 0y?

0 0 0
Ve = ' cos(0)?) o +e % sin(0y?) =— e — 0e”" wcos(0y?) — 5
where 6 = \/%/2. These vector fields give rise to six linearly independent conservation laws for Eq. (62).
The characteristics of these conservation laws are

1 0 . . .
0y =3 W g ") = V(") (= 1.....6)

Here, V; are regarded as operators acting on the functions { : R* — R. The corresponding conserved cur-
rents can be easily calculated from formula (34).

Finally, let us remark that each one-parameter group generated by a linear combination of the basic
vector fields V; can be used for constructing group-invariant solutions of Eq. (62). Consider, for instance,
the group H (V3 + V) generated by the vector field V3 + V5. The functions s = sin(6y?)/cosh(6y') and
u = W/ cosh(0y') constitute a complete set of invariants for this group and hence, following the well known
algorithm (Ovsiannikov, 1982; Olver, 1993), we seek the H (75 + V5)-invariant solutions of Eq. (62) in the
form

sin(0)?)
= h 1 = .
W = u(s)cosh(0y'), cosh(0y1) (63)
Substituting expressions (63) into Eq. (62), we get the reduced equation
2 d*u d’u d’u
(Sz—l) F-’—&S‘( )d% 4(3S—I)d2:0

The general solution to this ordinary differential equation is
1 1
u(s) =C| + C2]n<H_l) + Css + C4sln( St 1)
5 —

where C|, C,, C; and Cy are real constants. Hence, the H(V; + V5)-invariant solutions of Eq. (62) are given
by the expression
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sin(0y?) + cosh(6y")
sin(6y?) — cosh(6y")

sin(60y?) In sin(0y?) + cosh(6y")
cosh(6y') | sin(0)y?) — cosh(6y!) |

W(y',»*) = C) cosh(0y') + C, cosh(0y") ln{

+ Cssin(0y?) + C4

Using the inverse transformations (61) one can convert the above solutions of Eq. (62) into solutions of the
equation E,, o = z\/m, with variable coefficients (59).

Actually, Eq. (44) describes the state of equilibrium of a plate but introducing, according to d’Alembert
principle, the inertia force —pws; in its right-hand side, ws; being the second derivative of the displacement
field with respect to the time x* and p(x',x?)—the mass per unit area of the plate middle-plane, one can
extend (44) to the equation

DA*w + Naﬂwaﬁ + kw + pws; =0, (64)

describing the dynamic behaviour of the plate, provided that the rotatory inertia is negligible. Eq. (64) is
evidently self-adjoint and belongs to the class (1), n = 3, with coefficients given by expressions (45) and the
following ones:

A3333 :Aa333 :Ao(ﬂ33 :Ao{ﬁy3 :A333 :Aoc33 :Aaﬂ3 :Aoc3 :A3 — 07 A33 =p. (65)

Substitution of expressions (45) and (65) into the determining equations (12)—(16) implies that an equation
of form (64) is invariant under a point Lie group if and only if its generator is a linear combination of the
vector field X = wd/0w and one of the form

0 0 0
X=¢_—+&— — 66
¢ axﬁé 6x3+awaw’ (66)
where
F=¢xx), &=0x+C (C,C =const), =1, (67)
and

holds together with Egs. (46)—(50), the function A being given by expression (51).

An ordinary symmetry of the equation considered is either its variational symmetry, as well, or one that
can be completed to a variational symmetry, by adding to its generator a term of form Cwd/dw
(C = const). Indeed, in the present case condition (23) reads o + A+ éﬁl + 5?3 = 0, so substituting here
expressions (51) and (67) one obtains all symmetries with C; = 0 to be variational ones. If C; # 0, then the
corresponding symmetry is not a variational one but when the term —C,w0/0w is added to its generator, it
becomes a variational one. Hence, for each symmetry of Eq. (64) generated by a vector field of form (66)
there exists a conservation law with characteristic

Q = (%ilfu - Cl)w - Wuiu - W353 (69)

and conserved current B* given by formula (34) admitted by the smooth solutions of the equation con-
sidered. Thus, as in the time-independent case, to derive the conservation laws, which correspond to the
variational symmetries of an equation of form (64), it suffices to know the results of the group classification
of the class of equations in question; of course, the same holds true for the derivation of group-invariant
solutions to Eq. (64). This group-classification problem is the same as in the time-independent case pro-
vided that the function p satisfies Eq. (68).

Consider now as an example the equations of form (64) with constant coefficients. They govern the
dynamics of plates of constant bending rigidity and mass density, lying on a Winkler foundation of con-
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stant modulus and subjected to edge loading resulting in constant membrane stresses. Omitting the details,
the solution of the corresponding group-classification problem is as follows: (a) each equation of this type
admits the translations generated by the vector fields

0 0 0

o CTar 1T

(b) the equations of form

X

DA2W+N“W11 +N22W22 +kW+pW33 = 0, ]\/vll :sz,

admit additionally the rotation group with generator

(c) the equations of form
DAZW + pwW33z = O, (70)
admit additionally the scaling group with generator

0 0 0
S :xl@—l—xz@—kbgﬁ.
In each of the aforementioned three cases, the characteristics and currents of the corresponding conser-
vation laws can easily be computed from formulae (69) and (34), respectively. Let us remark, that the
conservation laws for Eq. (70) associated with the translational (X, X3, T') and rotational (X3) symmetries
are obtained by Ibragimov (1985). Here, these equations are found to admit an additional conservation law
with characteristic O = —w,x" — 2wsx®, associated with the scaling symmetry S.

6. Generalized symmetries and conservation laws in theories of Timoshenko beams, Reissner—Mindlin plates
and 3D elastostatics

The results obtained in Section 3 are readily applicable in many other theories of solids and structures
provided that such theories involve linear differential equations in one dependent variable of order less than
or equal to four. The present section comprises three examples illustrating the application of these results in
the nonclassical theories of Timoshenko beams and Reissner—Mindlin plates as well as in three-dimensional
elastostatics.

6.1. Timoshenko beam equations

The small vibration of homogeneous Timoshenko beams is described (see, e.g., Washizu, 1982) by the
following system of two coupled second-order partial differential equations:

D@, u] = EJ@y +kGA(u1 — @) — pJ oy =0,

) 71
Do, u]l = kGA(un — @) — pAuzy =0, (71)

where the rotation angle ¢ and the transversal displacement u are the dependent variables; the coordinate x!
along the rod axis and the time x> are the independent variables; p, G and E are the mass density, shear and
Young’s moduli of the beam material; 4 and J are the cross-section area and inertia moment of the beam; k&
is the shear correction factor.
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Given a solution (¢, u) of system (71), both the rotation angle ¢ and the transversal displacement u
satisfy the single fourth-order partial differential equation

y 20%T(1 4+ v
9O[W] = EJwnn — PJ( )Wllzz + szzzz + pAwxn =0, (72)

kE

in one dependent variable w and two independent variables; here w stands for both ¢ and u, v denotes
Poisson’s ratio and the well known relation E = 2G(1 + v) is taken into account. Indeed, by direct com-
putation, one can verify that

D0lp] = ~D1%2lp.u) + DiD1 % g,u] — £ D:D,51 [, u),
2J(1+v oJ
Dolu] = =D, u] + D1Z1[0, u] +(k—A)D1D1‘%[(p’ u — kGADzDZ%[(p’ ul.

It does not mean, however, that the Timoshenko beam equations (71) are thus decoupled since the opposite
of the above assertion is not always true, namely: given two solutions w = ¢ and w = u of Eq. (72), the
couple (¢, u) is not necessarily a solution of system (71). Therefore, Eq. (72) cannot replace system (71)
entirely, but nevertheless it is of considerable importance for the theory of shearable beams and so the
exploration of its symmetries is of interest.

Eq. (72) is self-adjoint and belongs to the class (1), n = 2, with nonzero coefficients

J 1+v 2027 (14 )
i _ g A1122:_p_ 142 4222 _ 42 — 4.
4 J, s 12— B p (73)
Substituting expressions (73) in the determining equations (12)—(16) and solving the over-determined sys-
tem obtained in this way, one can see that Eq. (72) admits only two vector fields

0 0
Xy === X2:@7

in addition to the vector fields (10). Moreover, condition (23) implies that the vector fields X; and X, are
infinitesimal variational symmetries of Eq. (72) and hence, two conservation laws with characteristics
0, = —w; and O, = —w,, respectively, are associated with them. The densities and fluxes of these con-
servation laws, calculated through formulae (34), read

I+v
l*y(l) = 12 (1 + 27) (3W11W12 — 8wiwiip — W2W111)
J(1+v 1
+ %E) (Wiaway — 2wiwnyy — Wawipy) + EpA(WWu — wiws),
1 2J(1+v
Puy = EEJ(WIIWII - 2W1W111) + %wzwm
1 1+v
— EpAwwzz 1+ ZT (Wiwaa + 2winwin + wawi, — 4wiwin), (74)
1 J(1+v
Vi = EEJW1W111 + % (Waawny — 2wywan)
1 J I+v
2PAW2W2 '?2 <1 2k> (Wiiwa + 2wipwis + wiwiay — 4wawy ),

1 J 1+v
Pp) = EEJ(Wnle — Wiwi2 — 2wowiny) — '?2 (1 + 2T> (Bwiawa — wiway — 8wawin).
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Each of the foregoing two conservation laws established for the single fourth-order equation (72) gives rise,
upon replacing w by ¢ or u, to two conservation laws for the Timoshenko beam equations (71). In the case
when w stands for u, these conservation laws can be written in the characteristic form

DIP + D2 Q” [ Q, M] + DﬂRﬁ()7 o= 1, 2,

with characteristics

~ ~ 2J(1+v) oJ
1 _ 2 _
Q(@ = Ula, Q(m) = Uy _k—Aum +@uazz, x=1,2, (75)
and
2J(1+v
R(la) - _uagl[([):u] +%(ula@2[(/)au] - uochfQZ[(Pvu]%
pJ
R(za) kGA (l/laDz,ﬁz[(P, } - %292[(/7,“])7 o= 1a2

Here, W and P denote the densities and fluxes (74) with u instead of w. Evidently, R“) are currents of
trivial conservatlon laws as they vanish on the solutions of Eq. (71). In a similar way, conservation laws for
the rotation angle ¢ could be established.

The invariance properties of Timoshenko beam equations (71) are considered in Djondjorov (1995). In
that paper, the vector fields X; and X; are identified to be infinitesimal variational symmetries of system (71)
and the corresponding conservation laws are derived therein. The conservation laws with characteristics
(75) which are found here to hold on the solutions of system (71) are new. They differ from the conservation
laws in Djondjorov (1995), because the latter correspond to geometric symmetries of system (71) while
expressions (75) imply that the conservation laws presented here correspond to generalized symmetries of
this system.

Neglecting the shear deformation of the rod cross-section one arrives at another rod theory, still ac-
counting for the rotatory inertia of the cross-section, governed by the equation

EJwiin — pJwiin + pAwy = 0,

which follows from Eq. (72) when & — oo. Here, w denotes the transversal displacement of the rod axis.
Omitting the details, this equation is found to admit the same variational symmetries as Eq. (72), the
densities and fluxes of the associated conservation laws being limit cases of those given by expressions (74)
when k — oo.

6.2. Reissner—Mindlin plate equations

Within the framework of the Reissner—-Mindlin plate theory, the small vibration of a homogeneous
elastic plate of mass density p and thickness % is governed (see, e.g., Washizu, 1982) by the following system
of partial differential equations:

, 6k(1 — v p(1 —+?

0 /;%ﬁ + (‘ﬁlz ¢) *(T)(Wl + ) *(Tq)w =0,

. 1+v 6k(1 —v 1 —v?

0 ﬂ%ﬁ"" 3 (@12 — VY1) _%(Wz +v) _%%3 =0, (76)
kl—V o 1—\)2

%(5 ”Waﬁ+(P1 +) —¥W33 =0,
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where (x!,x?) are Cartesian coordinates of the plate middle-plane, x* is the time, w is the transverse dis-
placement of the plate middle-plane, ¢ and  are the rotation angles of a straight element which is normal
to the middle-plane in the reference state, k is the shear correction factor, v is Poisson’s ratio, and E is
Young’s modulus. This system can easily be solved with respect to the derivatives of the variable w, namely

W 142
wp=—¢+ k(1 —v) {5#}%/3 t— (%2 Pn) — p(EV)%.z] ;
=Y+ (h ) [54;1//1 1 ; (@12 — V) — p(1— )%3], (77)
1— 2
W33 = % [51/;(4011/; + o) — %(%33 + %33)} )

where D = ER*/(12(1 — v?)) is the bending rigidity of the plate. The left-hand sides of expressions (77) meet
the compatibility conditions (w;) 33 = (w33); and (wz) 33 = (ws3), that are actually trivial conservation
laws. Nevertheless, substituting here the derlvatlves of the variable w from expressions (77), one could
obtain two nontrivial conservation laws for the solutions of the Reissner—-Mindlin plate equations (76)
whose currents involve derivatives of the rotation angles ¢ and  only. The left-hand sides of expressions
(77) also satisfy the compatibility condition (w;), = (w2) ;, which leads to the equation

2p(1 +v)

12
5~ P g Py~ (78)

for the function ¢ =\, — ¢,. This is a self-adjoint equation of form (1) with » = 3 and nonzero coefficients:

A = 5, A33:_2P(1+V)’ A:_lﬁ.
E h?

Substituting these coefficients in system (12)—(16) and solving it, one obtains, taking into account condition
(23), that the following six vector fields

B 0 B o 0 , 0
Xk = ka (k = 1,2, 3), X4 =X axl X 6x2,
0 2p(1+v) ;0 0 2p(l+v) , 0
_ 3 U SR S _ 3 Y PN T2 M
= gd T Y NTVaa T o

generate variational symmetries of Eq. (78). The currents of the associated conservation laws could easily
be derived from formula (34) in terms of the dependent variable ¢ and its first derivatives. Then, using the
relation ¢ =, — ¢,, it is a simple matter to rewrite these currents in terms of the rotation angles ¢ and ¥
and their derivatives. In this manner, one will obtain six conservation laws that are valid on the solutions of
system (76) because each solution (¢, y,w) of this system transforms (via the relation ¢ =, — ¢,) to a
solution of Eq. (78). Thus, we find that there exist eight conservation laws for the solutions of the Reissner—
Mindlin plate equations (76) that involve only derivatives of the rotation angles ¢ and .

On the other hand, it turns out that there exist conservation laws for system (76) involving only deri-
vatives of the transversal displacement w. Indeed, eliminating ¢ and y from system (76) one arrives at the
well known equation

3

ph 2 p*h* (1 +v)
DAAW — ———— =+ 1—-v |4 _ =
w 12(1 — V) (k + V) w33 + 6kE Wwizzz + phwyz =0 (79)

for the transversal displacement w. This equation is self-adjoint and belongs to class (1) with » = 3 and
nonzero coefficients
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p’h (1 +v)

QU g2 gy 33
’ 6kE

n 2
AB = pp AN 233 p Zi1-v)
ph; DO—\k

Substituting these coefficients in determining equations (12)—(16) and solving the over-determined system,
obtained in this way, one finds that Eq. (79) admits the vector fields
0 ) , 0 , 0
jz@’ J:1,2,3, Z4:x @—x @ (80)
These four vector fields generate variational symmetries of Eq. (79) and this is easily confirmed using
condition (23). Thus, given an equation of form (79), the characteristics of its conservation laws associated
with the vector fields (80) are

Oy =-—w;, Jj=123, Qu=x'w—xw,

and the corresponding conserved currents could be computed from formula (34). Each solution of the
Reissner—Mindlin plate equations (76) is a solution of Eq. (79) too. For this reason, the conservation laws
for the solutions of Eq. (79) are conservation laws for the solutions of system (76) as well. In this manner,
the conservation laws derived here for the single fourth-order equation (79) are conservation laws for the
Reissner-Mindlin plate equations (76) too, but in this case they are with characteristics

0!, =D5'Dy0y (x=1,2;j=1,2,3,4),
3 12D 2D

oh? (81)
0= 0 =y

5“/;D&D1JQ(/-) — mD3D;Q

A number of conservation laws for nonhomogeneous Reissner—-Mindlin plates are derived by Chien et al.
(1994). As for the homogeneous plates considered in this subsection, the general results of Chien et al.
(1994) imply that the vector fields Z;, j = 1, 2 and 3 are generators of variational symmetries of system (76).
However, the vector field Z, is not recognized as infinitesimal variational symmetry of system (76) by Chien
et al. (1994) and hence, the corresponding conservation law of characteristic (Q(14), Qf4), Q?4)) is new in the
Reissner—Mindlin plate theory. The conservation laws for the solutions of system (76) associated with Z;, Z,
and Z; whose currents are obtainable through our formula (34) are also new in the Reissner—Mindlin plate
theory because the form of their characteristics (81) implies that they correspond to generalized symmetries
of system (76) whereas the conservation laws in Chien et al. (1994) correspond to geometric symmetries of
system (76).

If the shear deformation is neglected, but the rotatory inertia of the straight element is retained in the
description, another plate theory arises whose governing equation is

ph’
DAAw — HAWS} + ,DhW33 = 0, (82)

which follows from Eq. (79) when k& — oco. Omitting the details, Eq. (82) is found to admit the same
variational symmetries as Eq. (79). The currents of the conservation laws for Eq. (82) are limits of the
currents of the conservation laws for Eq. (79) when &k — oo.

6.3. Three-dimensional elasticity

The three-dimensional homogeneous isotropic elastostatics is governed by the equations

E = ﬂémﬁuzﬂ + (;L + 'LL)(Y’V/;L{Z/} = 07 o, /3; Y= 17 27 37 (83)
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where (u',u? ) is the displacement vector in the Cartesian frame (x',x* x*). In this last subsection we

(following the tradition) use the notation 4 and u for the Lamé moduli. It is well known (see, e.g., Landau
and Lifshitz, 1970), that each component «” (y = 1,2,3) of the displacement vector satisfies the three-di-
mensional biharmonic equation

867 Wypee = 0, (84)

where w stands for any of the displacement components u” (y = 1,2,3). Apparently, Eq. (84) is self-adjoint
and belongs to the class (1) with n = 3.

Solving the corresponding determining equations (12)—(16) one arrives, after a straightforward compu-
tation, at the conclusion that the three-dimensional biharmonic equation (84) is invariant under the Lie
group generated by the vector fields

0 0 0
fizar Boa Brae
d d 3 g 0 0
) 1 3 — 3 2
F=xgg-—xa5, B=xo5-xog, R=xg5-¥3,
P P VS
A e e TR R 8
Fo= () — () — () 4 26 2t Oy & <5)
g = [(x x A XX@XS W
0 2 2 332 0 0 0
F= 2x1x2@+ [—(x")” + (*)" — () ]@+ 2x2x3@+x2w%,
d d 0 0
Al 2 2\2 3
Flo=2x'x al+2xxﬁ+[()_(x)+(x)]az+ ow’

In addition, condition (23) implies that all these symmetries are variational ones. Thus, in virtue of Noe-
ther’s theorem, the characteristics Q) of the vector field F; (s =1,2,...,10),
On =-wi, Op =-wa, 0Op =—ws,
Oy =x'wy =xX'wi, Qi) =xwi —x'ws, Qi) = xX'ws —x'wy,
Ony =w— x'wy = XPwy — Xws,
O = 2'Qp) — [(6)" + ()" + ()]
Q) = 270 — (&) + () + (') ]wa,
Quoy = 20y — [(¢') + ()" + (&) ]ws,

2 (86)

are simultaneously characteristics of 10 linearly independent conservation laws for the solutions of Eq. (84).
The corresponding conserved currents P can be calculated from the general formula (34) taking into
account the particular form of the respective characteristic O
Evidently, each of the foregoing 10 conservation laws established for the single fourth-order equation
(84) gives rise, upon replacing w by u’ (y = 1,2,3), to three conservation laws for Eq. (83). These con-
servation laws can be written in the characteristic form
D,(PY =Ry = Q1 E*, s=1,2,...,10, y=1,2,3 (87)

s)

with characteristics

a1 . At ()
Q<S’>1 = —5“/3 D,D Q(;> 5i —Aiéﬂ’ D.D Q; 88
(s) u ( B ()) 1(2+ 2p) ( B ()) (88)
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and

7)o 1 7 + U Y o off y 1 o, Y )
R = . (—A —r ME*— 5 ﬂE')DIgQg; 9 b Ol D4E". (89)
with «” instead of w; no

Here, P((j))“ and QE;; denote the conserved currents P and the characteristics Oy
E;))“ are currents of trivial

summation is assumed over the repeated index y. Expressions (89) show that R
conservation laws since they vanish on the solutions of Eq. (83).

To the best of our knowledge, the conservation laws (87) are new for three-dimensional homogeneous
isotropic elastostatics since, as it follows by expressions (86) and (88), they correspond to generalized
symmetries of Eq. (83) of order higher than the one considered previously in the literature (cf. Olver, 1984b;
Hatfield and Olver, 1998).

7. Concluding remarks

In this paper, Lie transformation group methods have been applied to the class of partial differential
equations (1). This class is of interest to structural mechanics since the governing equations of various
classical rod and plate theories belong to it. In the context of structural mechanics, the results of the group
analysis of Eq. (1) give a number of attractive possibilities. Here, the established point Lie symmetries of
Eq. (1) are used to construct group-invariant solutions to the governing equations of several rod and plate
models, to derive conservation laws revealing important features of such models and to find transforma-
tions simplifying the differential structure of equations associated with particular plate problems. Several
nonclassical structural theories as well as three-dimensional elastostatics involve important equations be-
longing to the class (1) which provides the opportunity to achieve new knowledge in these theories; the
examples given in Section 6 illustrate this fact.

First of all, the well known computational procedure for finding the most general point Lie symmetry
group has been applied to the foregoing class of equations. As a result, the system of equations (12)—(16) is
derived determining the equations of the type considered that admit a larger group together with the
generators of this group; naturally, all equations of this class, being linear and homogeneous, admit the
point Lie groups generated by the vector fields (10). System (12)—(16) allows the associated group-classi-
fication problem to be stated and examined.

The group-classification problem for Eq. (35) governing stability and vibration of rods and fluid con-
veying pipes resting on variable elastic foundations within the classical Bernoulli-Euler theory is completely
solved in Section 4. All equations of that kind admitting point Lie symmetry groups, in addition to the ones
generated by the vector fields (10), are determined and presented in Table 1 together with the generators of
the respective groups. The largest symmetry groups are admitted by the equations of form (35) whose
coefficients are such that y*>det(y*) =0, k(x) = 0. The most interesting group-invariant solutions for
Eq. (35) are identified and the corresponding reduced equations are presented at the end of Section 4.

In Section 5, this problem is solved for Eq. (44) governing bending and stability of plates resting on
variable elastic foundations within Poisson—Kirchhoff theory in terms of the invariants s and s, defined
by expressions (53). The equations of form (44) with s(;) = 52y = 0 are found to admit the largest symmetry
groups. It is noteworthy that each equation of this kind with variable coefficients can be transformed, using
a suitable change of variables, to an equation with constant coefficients belonging to the same class. Next,
an example of such a transformation is given, and, in addition, a class of group-invariant solutions to
the equation considered is presented. The group-classification problem for the differential equation (64)
governing the dynamics of Poisson—Kirchhoff plates of constant bending rigidity, mass density and
membrane stresses is also solved in Section 5.
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Once the “ordinary” point Lie symmetries of an equation of form (1) are determined, one can easily find,
using the general criterion (22), which of them are variational symmetries of this equation. Then, formulae
(31) and (34) provide explicit expressions for the conserved currents of the conservation laws associated
through Bessel-Hagen’s extension of Noether’s theorem with the established variational symmetries. The
conserved currents obtained in this way involve derivatives of the dependent variable of lowest possible
order. This is important in view of their application in mechanics and engineering. The reciprocity relation
valid for each equation of form (1) is given explicitly by formula (29).

The conservation laws for the rod equations listed in Table 1 are given in Table 2. Inspecting these results
one can see that the equations for rods without foundation and for rods on Winkler foundations admit two
independent conservation laws associated with the wave momentum (DaB?l) = 0) and energy (DaB‘z‘z) =0).
Equations of form (37) governing the stability of rods and fluid conveying pipes belong to this class. Rod
equations with x(x) = 0 and det(**) = 0 admit a supplementary conservation law D,B%, = 0 associated
with the scaling symmetry. Such are Eq. (37), governing pipes conveying fluid and extended by end force
(39), and Eq. (42), governing the vibration of the classical Bernoulli-Euler beam. The conservation laws for
the rod equations derived here are discussed in the light of the relevant results obtained by Chien et al.
(1993), Tabarrok et al. (1994) and Maddocks and Dichmann (1994).

In Section 5, it is shown, using the consequence (23) of the general criterion (22), that each point Lie
symmetry of a plate equation of form (44) generated by a vector field of form (52) is a variational symmetry
of this equation. Therefore, it gives rise to a conservation law with characteristic Q = (1/2)¢" w — w,¢" and
conserved current given by formula (34) admitted by the smooth solutions of the respective equation.
Similarly, each symmetry of the corresponding dynamic equations (64), except the one associated with the
vector field X, = wd/0w, is shown to generate a conservation law with characteristic 0 = Cw — w, " — w3,
where C is an appropriate constant, the corresponding conserved current being given by formula (34).

It should be remarked that the applicability of the general results presented in Section 3 exceeds the
classical Bernoulli-Euler and Poisson—Kirchhoff type theories. Indeed, many other theories of solids and
structures involve differential equations of form (1) that are satisfied by the solutions of the respective
governing equations. Then, the geometric symmetries of such equations of form (1) turn out to be gene-
ralized symmetries of the governing equations of the theories in question. Besides, the conservation laws for
the equations of form (1) are admitted by the solutions of the respective governing equations as well, and
involve only a part of the dependent variables. This wider applicability of the general results achieved in
Section 3 is illustrated in Section 6 by three examples—the theories of Timoshenko beams, Reissner—
Mindlin plates and three-dimensional elastostatics. The physical interpretation of the new conservation
laws from Section 6 is not yet clarified and will be considered in a forthcoming paper.

Finally, it should be underlined that a reader who is interested in particular rod or plate equations be-
longing to the class considered could use the results obtained here without going into detail concerning the
Lie group analysis of differential equations. He could profit from the paper by following the procedure
given at the end of Section 3.
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